Mineral Based Industry Essays

... MINERAL RESOURCES DONE BY: 1. N.ARUN KUMAR. 2.N.GAUTAM REDDY. 3.B.HARSHAVARDHAN. 4.K.VENKATESH. 5.P.TARUN. WHAT IS A MINERAL? A mineral is a naturally occurring substance that is solid and stable at room temperature, representable by a chemical formula, usually abiogenic, and has an ordered atomic structure. It is different from a rock, which can be an aggregate of minerals or non-minerals, and does not have a specific chemical composition. The exact definition of a mineral is under debate, especially with respect to the requirement a valid species be abiogenic, and to a lesser extent with regards to it having an ordered atomic structure. The study of minerals is called mineralogy. IRON ORE HOW ARE MINERALS DISTINGUISHED? Minerals can be described by various physical properties which relate to their chemical structure and composition. Common distinguishing characteristics include crystal structure and habit, hardness, lustre, diaphaneity, colour, streak, tenacity, cleavage, fracture, parting,...

of criticality at present are: indium, manganese, niobium, PGMs, andREs. The committee studied PGMs and REs in some depth, while it examined indium, manganese, and niobium in a more limited manner. Each of these minerals has a slightly different story in terms of importance in use (impact of a supply restriction) and availability (supply risk), the two dimensions of criticality.

PGMs—consisting primarily of platinum, palladium, and rhodium—are essential in automotive catalysts. Palladium can partially substitute for platinum in gasoline vehicles. Palladium cannot be substituted for platinum in diesel vehicles. Rhodium has no known substitutes in the control of NOx emissions. PGMs also are essential determinants of product quality in several industrial applications (the production of fertilizers, explosives, and petrochemicals). PGMs are mined almost exclusively in South Africa and Russia, and are typically mined as coproducts. The United States has two small PGM mines and a minor quantity of subeconomic PGM resources. Recycling occurs, primarily of spent automotive catalysts, but this amount is modest relative to annual use. The PGM market is relatively small, with annual worldwide mine production on the order of 200,000 kilograms.

REs are essential, with few if any good substitutes, in automotive catalytic converters, permanent magnets, and phosphors used in medical imaging devices, televisions, and computer monitors. The RE market is fragile because it is small—worldwide mine production in 2006 was on the order of 100,000 metric tons. U.S. manufacturers import REs predominantly from China. Very little recycling occurs. The United States has significant RE resources, but at present these resources are subeconomic.

Indium has no adequate substitutes for flat-panel displays. This use has experienced rapid growth in recent years. Worldwide mine production is small—some 500 metric tons in 2006, largely as a by-product of zinc mining and processing. The indium that U.S. manufacturers use comes primarily from China, Canada, Japan, and Russia. Very little indium is recovered through recycling.

Manganese has no satisfactory substitutes as a hardening element in various types of steel. It is not mined at present in the United States. The

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *