Winningham Case Study 1465

1. Bauchau V., Durham S.R. Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur. Respir. J. 2004;24:758–764. doi: 10.1183/09031936.04.00013904.[PubMed][Cross Ref]

2. Traidl-Hoffmann C., Jakob T., Behrendt H. Determinants of allergenicity. J. Allergy Clin. Immunol. 2009;123:558–566. doi: 10.1016/j.jaci.2008.12.003.[PubMed][Cross Ref]

3. Davies J.M. Grass pollen allergens globally: The contribution of subtropical grasses to burden of allergic respiratory diseases. Clin. Exp. Allergy. 2014;44:790–801. doi: 10.1111/cea.12317.[PubMed][Cross Ref]

4. Asam C., Hofer H., Wolf M., Aglas L., Wallner M. Tree pollen allergens— An update from a molecular perspective. Allergy. 2015;70:1201–1211. doi: 10.1111/all.12696.[PMC free article][PubMed][Cross Ref]

5. Pablos I., Wildner S., Asam C., Wallner M., Gadermaier G. Pollen Allergens for Molecular Diagnosis. Curr. Allergy Asthma Rep. 2016;16:31. doi: 10.1007/s11882-016-0603-z.[PMC free article][PubMed][Cross Ref]

6. European Forest Genetic Resources Programme. [(accessed on 31 May 2017)]; Available online: http://www.euforgen.org.

7. D’Amato G., Cecchi L., Bonini S., Nunes C., Annesi-Maesano I., Behrendt H., Liccardi G., Popov T., van Cauwenberge P. Allergenic pollen and pollen allergy in Europe. Allergy. 2007;62:976–990. doi: 10.1111/j.1398-9995.2007.01393.x.[PubMed][Cross Ref]

8. PalDat – Palynological Database. [(accessed on 31 May 2017)]; Available online: https://www.paldat.org.

9. Vrtala S., Grote M., Duchêne M., van Ree R., Kraft D., Scheiner O., Valenta R. Properties of tree and grass pollen allergens: Reinvestigation of the linkage between solubility and allergenicity. Int. Arch. Allergy Immunol. 1993;102:160–169. doi: 10.1159/000236567.[PubMed][Cross Ref]

10. Obersteiner A., Gilles S., Frank U., Beck I., Häring F., Ernst D., Rothballer M., Hartmann A., Traidl-Hoffmann C., Schmid M. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen. PLoS ONE. 2016;11:e0149545 doi: 10.1371/journal.pone.0149545.[PMC free article][PubMed][Cross Ref]

11. Karle A.C., Oostingh G.J., Mutschlechner S., Ferreira F., Lackner P., Bohle B., Fischer G.F., Vogt A.B., Duschl A. Nitration of the pollen allergen bet v 1.0101 enhances the presentation of bet v 1-derived peptides by HLA-DR on human dendritic cells. PLoS ONE. 2012;7:e31483 doi: 10.1371/journal.pone.0031483.[PMC free article][PubMed][Cross Ref]

12. McClain S., Bowman C., Fernández-Rivas M., Ladics G.S., van Ree R. Allergic sensitization: Food- and protein-related factors. Clin. Transl. Allergy. 2014;4:11. doi: 10.1186/2045-7022-4-11.[PMC free article][PubMed][Cross Ref]

13. Chua K.Y., Stewart G.A., Thomas W.R., Simpson R.J., Dilworth R.J., Plozza T.M., Turner K.J. Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. J. Exp. Med. 1988;167:175–182. doi: 10.1084/jem.167.1.175.[PMC free article][PubMed][Cross Ref]

14. Groeme R., Airouche S., Kopečný D., Jaekel J., Savko M., Berjont N., Bussieres L., Le Mignon M., Jagic F., Zieglmayer P., et al. Structural and Functional Characterization of the Major Allergen Amb a 11 from Short Ragweed Pollen. J. Biol. Chem. 2016;291:13076–13087. doi: 10.1074/jbc.M115.702001.[PMC free article][PubMed][Cross Ref]

15. Dumez M.E., Herman J., Campizi V., Galleni M., Jacquet A., Chevigné A. Orchestration of an uncommon maturation cascade of the house dust mite protease allergen quartet. Front. Immunol. 2014;5:138. doi: 10.3389/fimmu.2014.00138.[PMC free article][PubMed][Cross Ref]

16. Winningham K.M., Fitch C.D., Schmidt M., Hoffman D.R. Hymenoptera venom protease allergens. J. Allergy Clin. Immunol. 2004;114:928–933. doi: 10.1016/j.jaci.2004.07.043.[PubMed][Cross Ref]

17. Herbert C.A., King C.M., Ring P.C., Holgate S.T., Stewart G.A., Thompson P.J., Robinson C. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am. J. Respir. Cell Mol. Biol. 1995;12:369–378. doi: 10.1165/ajrcmb.12.4.7695916.[PubMed][Cross Ref]

18. Wan H., Winton H.L., Soeller C., Gruenert D.C., Thompson P.J., Cannell M.B., Stewart G.A., Garrod D.R., Robinson C. Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1. Clin. Exp. Allergy. 2000;30:685–698. doi: 10.1046/j.1365-2222.2000.00820.x.[PubMed][Cross Ref]

19. Widmer F., Hayes P.J., Whittaker R.G., Kumar R.K. Substrate preference profiles of proteases released by allergenic pollens. Clin. Exp. Allergy. 2000;30:571–576. doi: 10.1046/j.1365-2222.2000.00784.x.[PubMed][Cross Ref]

20. Page K., Ledford J.R., Zhou P., Dienger K., Wills-Karp M. Mucosal sensitization to German cockroach involves protease-activated receptor-2. Respir. Res. 2010;11:62. doi: 10.1186/1465-9921-11-62.[PMC free article][PubMed][Cross Ref]

21. Matsuwaki Y., Wada K., White T., Moriyama H., Kita H. Alternaria fungus induces the production of GM-CSF, interleukin-6 and interleukin-8 and calcium signaling in human airway epithelium through protease-activated receptor 2. Int. Arch. Allergy Immunol. 2012;158(Suppl. 1):19–29. doi: 10.1159/000337756.[PMC free article][PubMed][Cross Ref]

22. Florsheim E., Yu S., Bragatto I., Faustino L., Gomes E., Ramos R.N., Barbuto J.A.M., Medzhitov R., Russo M. Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin. J. Immunol. 2015;194:4621–4630. doi: 10.4049/jimmunol.1402493.[PMC free article][PubMed][Cross Ref]

23. Matsumura Y. Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells. J. Allergy. 2012;2012:903659. doi: 10.1155/2012/903659.[PMC free article][PubMed][Cross Ref]

24. Suzuki M., Itoh M., Ohta N., Nakamura Y., Moriyama A., Matsumoto T., Ohashi T., Murakami S. Blocking of protease allergens with inhibitors reduces allergic responses in allergic rhinitis and other allergic diseases. Acta Oto-laryngol. 2006;126:746–751. doi: 10.1080/00016480500475625.[PubMed][Cross Ref]

25. Kato T., Takai T., Mitsuishi K., Okumura K., Ogawa H. Cystatin A inhibits IL-8 production by keratinocytes stimulated with Der p 1 and Der f 1: Biochemical skin barrier against mite cysteine proteases. J. Allergy Clin. Immunol. 2005;116:169–176. doi: 10.1016/j.jaci.2005.03.044.[PubMed][Cross Ref]

26. Runswick S., Mitchell T., Davies P., Robinson C., Garrod D.R. Pollen proteolytic enzymes degrade tight junctions. Respirology. 2007;12:834–842. doi: 10.1111/j.1440-1843.2007.01175.x.[PubMed][Cross Ref]

27. Rutley N., Twell D. A decade of pollen transcriptomics. Plant Reprod. 2015;28:73–89. doi: 10.1007/s00497-015-0261-7.[PMC free article][PubMed][Cross Ref]

28. Zhao F., Durner J., Winkler J.B., Traidl-Hoffmann C., Strom T.M., Ernst D., Frank U. Pollen of common ragweed (Ambrosia artemisiifolia L.): Illumina-based de novo sequencing and differential transcript expression upon elevated NO2/O3. Environ. Pollut. 2017;224:503–514. doi: 10.1016/j.envpol.2017.02.032.[PubMed][Cross Ref]

29. Lang V., Usadel B., Obermeyer G. De novo sequencing and analysis of the lily pollen transcriptome: An open access data source for an orphan plant species. Plant Mol. Biol. 2015;87:69–80. doi: 10.1007/s11103-014-0261-2.[PubMed][Cross Ref]

30. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883.[PMC free article][PubMed][Cross Ref]

31. Finn R.D., Coggill P., Eberhardt R.Y., Eddy S.R., Mistry J., Mitchell A.L., Potter S.C., Punta M., Qureshi M., Sangrador-Vegas A., et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–D285. doi: 10.1093/nar/gkv1344.[PMC free article][PubMed][Cross Ref]

32. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data.

The high-latitude sector is extremely rich in plasma instabilities and other processes that act to create structure in the ionosphere. Our primary interest lies in the horizontal variation of plasma density and electric fields. Since the magnetic field is nearly vertical, the horizontal structure is equivalent to variations perpendicular to the magnetic field. We use the generic term structure, since terms such as waves or plasma density irregularities conjure up specific sources. In fact, a very long list of processes contributes to the generation of horizontal structures in the plasma density and velocity field of the high-latitude ionosphere. It is essentially impossible to treat the topic in its entirety, since our understanding is developing very quickly. Our hope instead is to give a reasonable hint at the breadth of the phenomena involved and, within the various subtopics, to treat a few important processes in some detail. As was the case in earlier chapters, we start with the F region and follow with the E region in the second portion of the chapter.

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *